Permission checks

Permission checks must always be included into Command execution methods.

AssetPermissions and PermissionService

The permissions must always be checked by the server. However, there some permission checks that can be done by the client. Example: disabling
special buttons/actions, while the server re-checks the permissions.

AssetPermissions

Use the Asset Per mi ssi ons service interface to perform permission checks in the context of an asset or to a set of assets:

Asset Perm ssions pernBervice = Pl atform get CCServi ceEx(Asset Pernmi ssi ons. cl ass);

The interface provides methods for Asset specific and Domain logic specific permission checks:

public interface AssetPerm ssions {
/'l Generic asset specific perm ssion checks (key = perm ssion key)
publ i c bool ean hasAsset Permi ssion(String key, AssetRef asset);
public bool ean hasAsset Permi ssion(String key, AssetRef[] assets);
publ i c bool ean hasAsset Pernission(String key, Asset asset);
publ i c bool ean hasAsset Perm ssion(String key, Asset[] assets);

/] Generic asset specific perm ssion checks (Any/All checks with I'ist of perm ssion keys)
publ i c bool ean hasAnyAsset Perm ssion(String[] keys, AssetRef asset);

publ i c bool ean hasAl | Asset Perm ssions(String[] keys, AssetRef asset);

publ i c bool ean hasAnyAsset Perm ssion(String[] keys, Asset asset);

public bool ean hasAl | Asset Perm ssions(String[] keys, Asset asset);

/1 Domain | ogic specific perm ssion checks
publ i c bool ean get Perm ssionDel eti on(Asset Ref[] assets, int state);

publ i c bool ean get Perm ssi onAsset Rel (Asset Ref parent Asset, Rel ati onType rel Type);
publ i c bool ean get Perm ssi onAsset Rel (Rel ati onType rel Type);
publi c bool ean get Perm ssi onCheckQut (Asset Ref[] assets);
publ i c bool ean get Perm ssi onExport Al |l (Asset Ref[] assets);
publ i c bool ean get Pernm ssi onRepl aceSt or ages(Asset Ref[] assets);
publ i c bool ean get Perm ssi onDel eti onSt or ages(Asset Ref[] assets);
publ i c bool ean get Perm ssi onShowVer si ons(Asset Ref[] assets);
c

publ i c bool ean get Perm ssi onRest or eVer si on(Asset Ref[] assets);

PermissionService

Use the Per m ssi onSer vi ce interface to perform global (user domain specific) permission checks:

Per m ssi onServi ce perm ssionService = Pl atform get CCServi ce(Perm ssionService. cl ass);

The Per mi ssi onSer vi ce interface provides methods to check for global permissions:

public interface Perm ssionService {

publ i c bool ean hasPerm ssion(String pernissionKey);

Example

@omuandHandl er (command = "com censhare. api . dam asset managenent . noveToNext Wor kf | owSt ep")
public static final class MyveToNext Wr kf | owSt epHandl er {
@Execut e
public Result execute(ComandContext context, |nput input) throws Exception {
Asset Ref asset Ref = AssetRef.fronString(input.assetRef);

/] Check perm ssion
Asset Per mi ssions pernBervice = Pl atform get CCServi ceEx(Asset Per nmi ssi ons. cl ass);
if (!pernBervice.getPernissionEditAsset Met aDat a(new Asset Ref[] { assetRef }, true))

throw new I egal Argunment Excepti on(
"Access denied: No perm ssion to edit neta data (changi ng workflow) of asset "
+ asset);

User permissions

Checking a user's permission is an important part when implementing a Command Handler. Every request sent by the client should be verified by the
server, since:

® The command can be executed by different users within different roles. Some of the users may have the right to execute the action, others not.
® Even if permission checks are already done on client side, the server should never trust the client blindly. The client may actually be hacked.

If you want to check a user's global permissions, you can use the service PermissionService. It checks if the current user has the given right in any of his
roles and domains (global administrator permission in this example):

@Execut e
public ResultData execute(ComandContext context, |nputData input) {

Per mi ssi onServi ce pernfService = Pl atform get CCServi ce(Perm ssi onService. cl ass);
if (!pernBervice. hasPermi ssion("app_admn_all"))
throw new SecurityException("No pernission");

One can also check for a list of permissions within one single service call. The method returns true if the user has at least one of the given permissions
(OR condition):

@xecut e
public Resul t Data execut e(CommandCont ext context, |nputData input) {
Per nmi ssi onServi ce pernfService = Pl atform get CCServi ce(Perm ssi onServi ce. cl ass);
if (!pernBervice. hasAnyPermn ssion("app_adm n_all", "app_adm n_data"))
throw new SecurityException("No pernission");

There's also an alternative way to check the user's permissions. The necessary permission keys can be specified as a parameter of the @xecut e
annotation. If the user does not have at least one of the specified rights, an exception is thrown if the client makes an attempt to execute the method.
Checking permissions that way is more elegant and should be used preferably. However, it can only be used for global permission checks, not for asset-
specific permission checks. Using permission parameter, the example from above can be rewritten and simplified like this:

@Execut e(perm ssi ons="app_adm n_al |, app_adm n_data")
public ResultData execute(ComandContext context, |nputData input) {

}

Typically it's necessary to check the permissions not only in the context of the current user, but also in the context of a particular asset. The domains of the
given asset are then used to filter the roles of the user. If the user does not have the appropriate rights in those domains, the action must fail. For that
purpose, you have to use the service AssetPermissions and provide the asset object (or its key) as the second parameter in the service call. Example:
Check if the current user has the right to see the preview of a particular asset:

Asset asset = queryAsset();
Asset Perm ssions pernBervice = Pl atform get CCServi ce(Asset Permi ssi ons. cl ass);
if (!pernBervice. hasAsset Perm ssion("asset_preview', asset))

throw new SecurityException("No pernission");

The service interface also provides special functions for the most common permission checks on assets, e.g. permission for check out, editing meta data
or deletion. Those methods should be used in favor if available, since additional checks are made internally. Example: Check if the current user has the
right to open (check out) a particular asset:

Asset asset = queryAsset();
Asset Perm ssions pernBervice = Pl atform get CCServi ce(Asset Perm ssi ons. cl ass);
if (!pernBervice. getPerni ssionCheckQut (asset.getSelf()))

throw new SecurityException("No perm ssion");

	Permission checks

